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Abstract. How do you make sense of a graph that you have never seen before? Building on recent work 
demonstrating that prior knowledge of conventional graph types is extraordinarily difficult to overcome, we 
explore the use of implicit scaffolding to reconstruct graph reading as an insight problem. We hypothesize that 
constructing a mental impasse will improve learner performance by increasing the probability learners will 
reconsider their default interpretation strategies and recognize alternative interpretations of novel graphical 
forms. In a between-subjects laboratory experiment we find support for this hypothesis. Analysis of qualitative 
data suggests promising directions for understanding graphical intuitions, and we conclude with suggestions for 
future work that address the timing of mental model formation for unconventional graphic forms.  
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Introduction 
Owing largely to their importance in STEM education, techniques for supporting graph 
comprehension have been a focus of research in the learning, cognitive and computer sciences alike. 
The most minimal interventions involve graphical cues—visual elements that guide attention, akin to 
gesture and pointing in conversation. Acartürk (2014) investigated the influence of point markers, 
lines and arrows on bar charts and line graphs, finding that different cues lead readers to interpret a 
graph as depicting either an event (points) or process (arrows). Mautone & Mayer (2007) investigated 
techniques from reading comprehension to support meaningful processing of graphs in a college 
geography classroom. In a series of experiments, they found that signalling, concrete and structural 
graphic organizers were effective learnings aids, affecting subsequent structural interpretation of the 
graphs (measured by relational or causal statements).  

Importantly however, the cognitive aids explored in this literature do not instruct users on how to 
read the graphs – the “rules" for their representational systems. Rather, it is assumed that the reader 
has familiarity with the type of graph being read (scatterplots, line graphs, bar charts), all relying on 
the Cartesian coordinate system. Rather, these scaffolds serve to connect the variables in a graph to 
their real-word referents. In recent work (Fox & Hollan, 2018), we investigated learner behavior when 
presented with a simple but unconventional graph for temporal intervals: The Triangular Model of 
Interval Relations (Figure 1), for which learners had no prior knowledge. In an observational study, we 
found that learners struggled to make sense of the graph, misinterpreting the coordinate system as 
Cartesian. In an experimental study we evaluated four scaffolding techniques for self-directed 
learning: two text instructions, one static image depicting axis intersections and an interactive image in 
which the intersections appeared on mouse hover. The results revealed that only the interactive image 
condition significantly improved comprehension over a no-scaffold control. Prior knowledge of 
conventional graph types proved extraordinarily difficult to overcome, though subsequent analysis of 
differences between two sets of materials suggested that task structure–specifically the extent to which 
a problem poses a mental impasse–may function as a powerful aid for comprehension.  
 

The Present Study 
Results of our prior studies (Fox & Hollan, 2018) give us reason to suspect that conventional graph 
knowledge may hinder comprehension of unconventional representations. In this case of the TM 



graph, Cartesian expectations for the structure of the coordinate system interfere with our ability to 
follow perceputal cues provided by the graph’s diagonal gridlines. Lockhart, Lamon & Gick (1988) 
describe difficulties in problem solving as a, “failure to access available information” (pg. 36). We can 
characterize misinterpretation of the TM graph as a failure to perceive and/or recognize the importance 
of the graph’s diagonal gridlines. Lockhart et. al propose students must reconceptualize a problem in 
order to solve it, and that simply giving students information may not be sufficient. This provides an 
explanation for why explicit instructions given to students through static text and image scaffolds by 
Fox & Hollan (2018) did not improve performance with the TM graph, while the lack of available 
answers to the first problem in a particular set of materials did. The latter induces a state of 
puzzlement, which Ohlsson describes as an mental impasse: “a state in which problem-solving has 
come to a halt; all possibilities have been exhausted and the problem-solver cannot think of any way to 
proceed” (Ohlsson, 1992, pg. 4). In the present study we test the hypothesis that constructing a mental 
impasse will improve comprehension of this unconventional graph.  

 

Methods 
Sixty (55 % female) undergraduate STEM majors at an American University participated in exchange 
for course credit (age: 18 - 33 years). We utilized a between-subjects design with two groups and one 
independent variable (implicit scaffold: none[control] vs. impasse). Participants were randomly 
assigned to an experimental group, yielding thirty students per condition. For each participant, we 
collected comprehension score (max = 15 points) as the dependent variable, as well as recordings of 
all mouse movements in the experimental application.  

Participants completed a graph reading task individually on a laboratory computer, viewing graphs 
and questions in accordance with their randomly assigned experimental condition. The graph reading 
task consisted of a TM graph and 15 multiple choice questions asking about the temporal relationship 
between data points in the graph (see Figure 1). Questions were presented one at a time without 
feedback, in the same order for both conditions. The first five questions of each graph-reading task 

 

 

 
The Triangular Model (TM) Graph represents intervals of 
time (such as events). In the graph at left, each point 
represents an event. To find the start and end time of an 
event, the reader follows the diagonal gridlines from the 
point to the intersections with the x-axis. For example, event 
B starts at 4pm and ends at 6pm. The duration of the event 
can be read from the y-axis.  
 
In the Control (non-impasse) Condition, a reader will find 
an intersecting data point if they misinterpret the 
coordinates as Cartesian. In the graph at left, the question 
“What event(s) start at 11am” has a correct answer of event 
F. But most students mistakenly report event A, based on 
their projection of an orthogonal (red dashed line) 
intersection with the x-axis. This is a question from the 
control (non-impasse) condition.  
 
In the Impasse Condition, the reader will not find a data 
point if they misinterpret the coordinates as Cartesian. At 
left, the question “What event(s) start at 3pm?” has a correct 
answer of G, but no available answer for the orthogonal 
projection (purple dotted line). This is a question from the 
impasse condition. 
 

Figure 1. The Triangular Model (TM) Graph, with Control (non-impasse) & Impasse examples 



were structured based on the assigned scaffold group (none[control] or impasse). The following ten 
questions were the same (non-impasse) for both groups. Prior to data analysis, data from six 
participants were excluded based on their failure to correctly answer an an attention check question.  
 
Results 
The mean accuracy score across the sample (n = 54) was approximately 6 points with a standard 
deviation of 0.68, and values ranging from 1 to 15 (max) points. On average, participants in the 
impasse group had higher scores (M = 7.6, SD = 5.2) than participants in the non-impasse control 
group (M = 3.9, SD = 4.2), yielding a statistically significant difference t(49.7) = -2.8, p = 0.006; a 
moderate-sized effect r = 0.37. 
 
Discussion 
The results of this study support our hypothesis that constructing a problem to present a learner with a 
mental impasse yields significantly better performance on the unconventional graph reading task. We 
expect this technique should generalize to other representations with unconventional coordinate 
systems, thought it is unclear whether the same attention-directing mechanisms would be appropriate 
for forms utilizing alternative markings. Importantly, this techqnique seems to be effective in directing 
learner’s attention away from their default Cartesian interpretation based on prior graph knowledge. 
This effect is particularly evident when reviewing video replays of mouse movements of learners in 
the impasse condition. Most learners first trace an orthogonal intersection from the x-axis, before 
finding that no data point intersects the projected line. It is at this point that learners have reached the 
“mental impasse”. We also observed greater variance in the answer choices by learners in the impasse 
condition. While control condition participants tended to choose the incorrect ‘Cartesian’ answer, 
learners in the impasse condition who did not discover the correct answer nonetheless found 
alternative interpretations for how the graph might work. We are presently conducting follow-up 
interviews to explore the nature of these strategies and how they may reflect learner’s graphical 
intuitions. Based on our present analysis of the timecourse of response accuracy, we suspect that that 
to be effective, the learner must confront a mental impasse in the initial phase of graph 
interpretation—while their mental model for the graphical framework is being constructed. Future 
work should address this question by varying the timing of impasse vs. non-impasse questions with 
analysis of the time course of correct and incorrect responses.  
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